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Abstract

High-resolution dermoscopic images are essential for
accurate skin-lesion diagnosis, yet they are costly to store
and process—constraints that are especially acute in tele-
dermatology, where bandwidth and hardware are limited.
This study investigates how vision transformers (ViT) and
self-supervised models behave when finetuned on com-
pressed, downsized dermoscopic images. Using the ISIC
2019 dataset, we evaluate ViT, SimCLR, and DINOv2 at
multiple input resolutions while tracking computational de-
mands. We find that reducing resolution markedly lowers
memory and FLOPs with only a minor loss in classifica-
tion accuracy. The ImageNet-pretrained ViT remains the
top performer across resolutions, and DINOv2 attains com-
parable accuracy after modest hyperparameter tuning, un-
derscoring both architectures as strong candidates for low-
resource dermatology applications. These results provide
practical guidance for deploying efficient AI in bandwidth-
constrained clinical settings and offer insights transferable
to other medical-imaging tasks.

1. Introduction
Dermoscopic imaging has emerged as a fundamental

tool in dermatological diagnostics, particularly for the early
detection of melanoma and other skin cancers. These im-
ages, often captured at high resolutions, enable clinicians
and AI models alike to assess subtle textural and color-
based patterns indicative of disease. However, the computa-
tional and storage demands of high-resolution imaging pose
a significant barrier to scalable diagnostic solutions, espe-
cially in resource-constrained environments such as mobile
health clinics or teledermatology platforms. In these set-
tings, image compression becomes a practical necessity.

This project proposes a strategy to mitigate the trade-off
between image resolution and diagnostic performance by
leveraging pretrained foundation models (FMs). Specifi-
cally, we investigate the diagnostic efficacy and computa-
tional efficiency of finetuning FMs on downsized dermo-
scopic images from the ISIC 2019 dataset. We aim to an-
swer whether reduced-resolution inputs—such as 56 × 56
or 112× 112—can be used without significantly sacrificing
model performance in tasks like skin lesion classification.

This study addresses the following core question: How
does finetuning pretrained foundation models on downsized
dermoscopic images impact diagnostic performance in der-
matology tasks such as skin cancer classification?

To answer this question, our study focuses on four pri-
mary objectives:

1. Finetune pretrained foundation models on ISIC 2019
images resized to varying resolutions (e.g., 56 × 56,
112× 112, 224× 224).

2. Evaluate model performance on downstream derma-
tology tasks, including lesion classification.

3. Measure computational efficiency, specifically floating
point operations (FLOPs) and GPU memory usage, for
models operating on compressed images.

4. Conduct a targeted, lightweight hyperparameter sweep
to assess how much additional performance can be un-
locked with minimal tuning.

2. Related Work
2.1. Foundation Models in Medical Imaging

The application of large pretrained models, including
vision transformers, to medical imaging tasks has shown
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promise in recent years. Vision Transformer (ViT) models,
originally introduced by Dosovitskiy et al. [9], have demon-
strated strong performance in general vision benchmarks
and have been adapted for specialized domains such as der-
matology [3] and pathology [6]. These studies highlight
the potential of ViTs to capture intricate patterns in med-
ical images, such as those found in dermoscopic datasets
like ISIC 2019. However, the transferability of these mod-
els to medical domains often requires careful finetuning due
to the domain shift between general-purpose image datasets
and highly specialized medical imaging data [2]. For in-
stance, [2] explored the use of large-scale pretrained mod-
els in medical imaging, emphasizing the need for domain-
specific adaptation to maintain diagnostic accuracy in tasks
like skin lesion classification.

Recent advancements in foundation models have also
focused on improving their robustness to domain-specific
challenges, such as varying imaging conditions in teled-
ermatology. [15] investigated the transfer learning capa-
bilities of pretrained models in medical imaging, finding
that finetuning on domain-specific datasets, such as ISIC
2019, significantly improves performance over direct appli-
cation of pretrained weights. This is particularly relevant
in resource-constrained environments, where computational
efficiency and model performance must be balanced.

2.2. Self-Supervised Representation Learning

Self-supervised learning (SSL) has emerged as a pow-
erful paradigm for learning robust representations without
extensive labeled data, which is particularly valuable in
medical imaging where annotated datasets are often scarce.
Methods like SimCLR [5] utilize contrastive learning to
create generalizable feature representations by maximizing
agreement between augmented views of the same image.
DINO [4] similarly employs a self-distillation approach,
achieving competitive performance in low-label scenarios.
DINOv2, a more recent iteration, incorporates improve-
ments in training stability and scale [14], making it a candi-
date for foundation modeling in complex datasets like ISIC
2019.

Recent work has explored the use of SSL in medical
imaging, particularly for improving generalization across
institutions and imaging modalities [2]. For example,
[1] demonstrated that SSL-pretrained models can achieve
strong performance in dermatology tasks by learning trans-
ferable features that are robust to variations in image acqui-
sition. This suggests SSL approaches may be particularly
relevant for teledermatology, where models must generalize
across diverse imaging conditions, such as those encoun-
tered in mobile health clinics, which aligns with our study’s
focus on evaluating SSL models on downsized dermoscopic
images to enable efficient AI deployment in low-resource
clinical settings.

2.3. Resolution and Computational Efficiency

Resolution plays a key role in medical imaging, where
fine-grained visual features may be essential for accurate
diagnosis. Prior studies have investigated the trade-offs
between input resolution, performance, and computational
cost [16, 18]. In the context of foundation models, particu-
larly ViTs, the quadratic scaling of memory with image size
presents unique challenges.

In dermatology, where fine-grained visual features are
critical for accurate diagnosis, the impact of resolution re-
duction is less straightforward. Our study is motivated by
the largely unexplored application of such findings to ViTs
and SSL models. We focus on finetuning ViTs, SimCLR,
and DINOv2 on downsized ISIC 2019 images.

Our work builds on these findings by systematically eval-
uating the interplay between resolution, computational effi-
ciency, and diagnostic performance in the context of pre-
trained foundation models. By focusing on the ISIC 2019
dataset and finetuning models on downsized images, we aim
to provide actionable insights for deploying AI in resource-
constrained clinical environments, with potential implica-
tions for other medical imaging applications.

3. Data

We utilize the International Skin Imaging Collaboration
(ISIC) 2019 dataset[17, 7, 11], comprising of 25,331 der-
moscopic images labeled across eight different skin disease
categories. The dataset serves as a challenging image clas-
sification dataset, as the distribution across classes is heav-
ily skewed towards the first two classes melanoma (MEL)
and melanocytic nevus (NV). The dataset is widely used
for benchmarking skin lesion classification tasks due to its
diversity and high-quality annotations. However, the high-
resolution nature of these images (typically 1024 × 1024
pixels or higher) poses challenges for computational ef-
ficiency, particularly in resource-constrained settings like
teledermatology platforms.

For this reason, we limit our analysis to the first two cat-
egories, MEL and NV and use a balanced dataset to create
a binary classification task. To investigate the impact of
image resolution on model performance, we preprocess the
ISIC 2019 images by resizing them to multiple resolutions:
56×56, 112×112, and 224×224 pixels. These resolutions
were selected to balance computational efficiency with the
preservation of critical visual features necessary for accu-
rate diagnosis. Additionally, we introduce simulated image
degradation methods—including lossy JPEG compression,
gaussian blurring, and color quantization with information
loss—to mimic a wide range of transmission distortions.
Each type of perturbation is randomly introduced to 20%
of the dataset.

The dataset is split into training and test sets using an
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80:20 ratio, ensuring that images from the same patient are
not distributed across splits to prevent data leakage. This
preprocessing pipeline ensures that our experiments align
with the study’s objectives of evaluating diagnostic perfor-
mance and computational efficiency on downsized dermo-
scopic images, providing a robust foundation for finetuning
pretrained foundation models like ViT, SimCLR, and DI-
NOv2.

4. Methodology
4.1. Hardware

All computational tasks, including model fine-tuning and
evaluation, were performed on Stanford University’s Sher-
lock high-performance computing (HPC) cluster. Specifi-
cally, an NVIDIA H100 80GB HBM3 GPU was utilized for
all processing.

4.2. Pretrained models

The core model for this study is the Vision Transformer
(ViT-B/16) [10], which serves as our baseline. This spe-
cific architecture consists of a base-sized transformer with
patch embeddings of size 16 × 16. The model is initial-
ized with weights pretrained on the ImageNet dataset [8], a
large-scale dataset comprising over 14 million images cat-
egorized into more than 20,000 classes. This supervised
pretraining on ImageNet is a standard approach for gen-
eral vision tasks, and ViT-B/16 has demonstrated significant
success in a wide range of benchmarks [12]. For an input
image x ∈ RH×W×C , where H,W are height and width,
and C is the number of channels, the ViT first transforms it
into a sequence of flattened 2D patches xp ∈ RN×(P 2·C),
where (P, P ) is the resolution of each image patch and
N = HW/P 2 is the resulting number of patches. These
patches are then linearly embedded and positional embed-
dings are added, forming the input sequence to the trans-
former encoder.

In addition to the ImageNet-pretrained ViT-B/16, we in-
clude two prominent self-supervised learning (SSL) mod-
els to evaluate whether contrastive or distillation-based pre-
training enhances feature quality and robustness. These
models are selected to represent distinct paradigms within
SSL: one from the DINOv2 model family (a distillation-
based approach) and one from SimCLR (a contrastive learn-
ing approach).

Our approach focuses on evaluating the impact of these
different pretraining strategies on feature quality and ro-
bustness within the context of Vision Transformers. This is
crucial for several reasons. First, by comparing supervised
(ImageNet) pretraining with self-supervised methods (DI-
NOv2, SimCLR), we aim to dissect how different learning
paradigms influence the learned representations and, conse-
quently, the downstream performance. Second, the insights

gained from this study can guide future model selection
and pretraining strategies for various computer vision ap-
plications, potentially leading to more efficient and robust
deployments, especially in scenarios with limited labeled
data. The general objective for these pretrained models is to
learn a mapping fθ : X → Z , where X is the input image
space and Z is the latent feature space, such that the features
z = fθ(x) are semantically rich and discriminative.

4.2.1 DINOv2

DINOv2 [14] is a self-supervised learning framework that
leverages knowledge distillation with no labels. It works
by training a student Vision Transformer to match the out-
put of a teacher Vision Transformer, where the teacher is
an exponentially moving average of the student. The core
idea is to learn powerful visual representations by enforc-
ing consistency between different augmented views of the
same image. For an input image x, two augmented views
x1 and x2 are generated. The student network fs processes
x1 and the teacher network ft processes x2, producing re-
spective representations zs = fs(x1) and zt = ft(x2). The
loss function aims to minimize the discrepancy between the
student’s and teacher’s outputs, often formulated as a cross-
entropy loss or similar divergence measure:

LDINOv2 = −
K∑

k=1

zt,k log zs,k

where zt,k and zs,k are the k-th components of the teacher
and student output distributions (e.g., softmax probabilities
over prototypes or dimensions of the embedding). This pro-
cess encourages the student to learn robust features that are
invariant to various augmentations.

4.2.2 SimCLR

SimCLR (A Simple Framework for Contrastive Learning of
Visual Representations) [5] is a pioneering self-supervised
learning method that focuses on contrastive learning. It
trains a neural network by maximizing agreement between
different augmented views of the same image (positive
pairs) while minimizing agreement with augmented views
of other images (negative pairs). For an input image xi, two
augmented views, x̃i,1 and x̃i,2, are generated. These views
are then passed through an encoder network f to obtain
representations, followed by a projection head g to project
them into a latent space. The loss function, typically the NT-
Xent (Normalized Temperature-scaled Cross-Entropy) loss,
encourages positive pairs to be close and negative pairs to
be far apart in this latent space. For a mini-batch of N im-
ages, leading to 2N augmented views, the loss for a positive
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pair (z̃i,1, z̃i,2) is defined as:

LSimCLR = − log
exp(sim(z̃i,1, z̃i,2)/τ)∑2N

j=1 1j ̸=i exp(sim(z̃i,1, z̃j)/τ)

where sim(u,v) = u⊤v/(∥u∥2∥v∥2) is the cosine similar-
ity, τ is a temperature parameter, and 1j ̸=i is an indicator
function that is 1 if j ̸= i. This framework enables the
model to learn a rich representation space where semanti-
cally similar images are grouped together.

4.3. Finetuning Procedure

Model training was conducted using the Hugging Face
Transformers Trainer class, providing a robust and effi-
cient framework for finetuning Vision Transformer mod-
els. We employed the AdamW optimizer [13], a variant
of Adam that incorporates decoupled weight decay, which
has been shown to improve generalization performance for
deep learning models. A weight decay of 0.01 was applied
to regularize the model and prevent overfitting by penaliz-
ing large weights.

4.4. Initial Resolution Variance Exploration

We initiated our study by fully fine-tuning the pretrained
ViT, DINOv2, and SimCLR backbones at three input res-
olutions: 224 × 224, 112 × 112, and 56 × 56. To iso-
late the effect of resolution, all other hyperparameters were
held constant across runs: learning rate = 1 × 10−5, batch
size = 256, training epochs = 3, and a linear learning-
rate scheduler. The learning rate, epoch count, and sched-
uler were selected heuristically for this exploratory phase,
whereas the batch size ceiling of 256 was dictated by avail-
able GPU memory.

4.5. Learning Rate Tuning

Building on the resolution sweep, we carried out a tar-
geted learning-rate ablation. For ViT we tested three initial
rates at every resolution—1×10−4, 5×10−5, and 1×10−5.
Because preliminary runs of DINOv2 at 224×224 exhibited
greater loss volatility, we probed a lower range of 1×10−5,
5× 10−6, and 1× 10−6.

All experiments were extended to 6 epochs and trained
with a cosine-annealing scheduler that decays the learning
rate smoothly from its initial value to a small floor. This
schedule permits coarse exploratory updates early in train-
ing and progressively finer adjustments near convergence,
a pattern that typically stabilises optimisation and improves
final accuracy.

4.6. Evaluation

Model quality was assessed from three complementary
perspectives:

• Predictive accuracy. We report top-1 accuracy
for each backbone—ViT-B/16, DINOv2, and Sim-
CLR—at all three input resolutions. This is to gauge
how effectively the pretrained models can transfer their
internal representations to the downstream task with
varying levels of information.

• AUC and F1-score. To understand how well each pre-
training method distinguishes between classes, espe-
cially when there’s an imbalance, we used the Area
Under the Receiver Operating Characteristic Curve
(AUC) and the macro F1-score. While our training
dataset was explicitly balanced, we were interested in
exploring the accuracy per class to uncover potential
disparities in performance across different categories
that might not be captured by overall metrics.

• Computational footprint. Peak GPU memory con-
sumption and theoretical inference FLOPs are logged
for every resolution, clarifying the cost–accuracy
trade-off that informs real-world deployment deci-
sions.

5. Results

5.1. Resolution-Variant Model Performance

We first finetuned and evaluated each of the three pre-
trained models at multiple input resolutions. Figures 1, 2,
and 3 depict the raw loss over traning steps for the ViT, DI-
NOv2, and SimCLR finetuning experiments respectively.

Figure 1: Training-loss trajectory for ViT at varying image
resolutions
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Figure 2: Training-loss trajectory for DINOv2 at varying
image resolutions

Figure 3: Training-loss trajectory for SimCLR at varying
image resolutions

Higher input resolutions generally produced more favor-
able loss trajectories: the effect was pronounced for ViT,
moderate for DINOv2, and only marginal for SimCLR.

An examination of the loss curves reveals distinct behav-
iors across the models. ViT’s training loss showed a contin-
uous decrease, reflecting effective learning. While DINOv2
also exhibited an overall reduction in loss, it was punctu-
ated by significant, periodic spikes. SimCLR, however, pre-
sented a starkly different picture; its loss curves remained
largely horizontal, suggesting the model struggled to learn
or converge, yielding minimal gains over its training dura-
tion.

Table 1 encapsulates the core trade-offs between input
resolution, accuracy, and compute:

• Compute savings. Shrinking images from 224 × 224
to 56 × 56 cuts FLOPs and peak GPU memory by
roughly an order of magnitude for every model (e.g.,
ViT: 16.86 G→ 0.86 G).

• ViT resilience. Despite the steep decrease in compute,
ViT’s accuracy dips marginally (0.776 → 0.752) and
AUC stays ≥ 0.84.

• DINOv2 sensitivity. DINOv2 performs well at full
resolution (0.734 accuracy, 0.879 AUC) but dramat-
ically loses accuracy at 56 × 56, indicating stronger
dependence on high-resolution detail.

• SimCLR floor effect. Even at 224 × 224 it lags both
transformers by approximately 25 percentage points;
further down-sampling yields negligible gains, con-
firming its limited utility under tight memory budgets.

Model Image Resolution
Peak

Memory
(MB)

FLOPs
(G) Accuracy F1 AUC

ViT
224 × 224 31 982 16.86 0.776 0.776 0.880
112 × 112 10 002 4.28 0.756 0.755 0.847
56 × 56 3956 0.86 0.752 0.751 0.855

DINOv2
224 × 224 46 188 21.96 0.734 0.784 0.879
112 × 112 34 687 15.34 0.724 0.723 0.832
56 × 56 24 567 8.97 0.688 0.630 0.819

SimCLR
224 × 224 4858 4.13 0.528 0.438 0.591
112 × 112 2340 1.09 0.475 0.429 0.466
56 × 56 1720 0.30 0.514 0.514 0.523

Table 1: Resource usage and validation performance across
ViT, DINOv2, and SimCLR models at three input resolu-
tions.

5.2. Learning Rate Tuning

We additionally performed learning rate tuning experi-
ments for ViT at the three input image resolutions. Sup-
plemental figures 4 and 5 depict the training loss trajectory
and eval accuracy respectively for a 224 × 224 resolution,
supplemental figures 6 and 7 depict loss and accuracy for
a 112 × 112 resolution, and supplemental figures 8 and 9
depict loss and accuracy for a 56× 56 resolution.

The learning rate experiments combined with the ex-
tended training horizon and cosine annealing produced sub-
stantial improvements in classification performance. As
seen in Table 2, at a learning rate of 1× 10−4 ViT achieved
maximal gains of nearly 10 percentage points at higher res-
olutions (224× 224 and 112× 112), and over 4 percentage
points at the lowest resolution (56 × 56), highlighting its
sensitivity to even minimal hyperparameter tuning.

Supplementary figures 10 and 11 depict the training loss
and evaluation trajectories, respectively, for DINOv2 fine-
tuned at an input resolution of 224 × 224 across differ-
ent learning rates. As shown, the revised traning setup-
combined with targeted learning rate tuning yielded notice-
ably more stable training dynamics. Table 3 further con-
firms this improvement, with an over 6 percentage point
increase in maximum evaluation accuracy and correspond-
ingly improved F1 and AUC scores at a learning rate of
5× 10−6.
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Resolution LR Accuracy F1 AUC

224× 224
1× 10−4 0.859 0.859 0.934
5× 10−5 0.844 0.844 0.923
1× 10−5 0.812 0.811 0.902

112× 112
1× 10−4 0.813 0.813 0.901
5× 10−5 0.802 0.805 0.896
1× 10−5 0.785 0.785 0.874

56× 56
1× 10−4 0.796 0.796 0.886
5× 10−5 0.790 0.790 0.877
1× 10−5 0.758 0.760 0.847

Table 2: Classification performance for ViT across input
resolutions and learning rates.

LR Accuracy F1 AUC

1× 10−5 0.789 0.788 0.889
5× 10−6 0.812 0.797 0.902
1× 10−6 0.790 0.790 0.890

Table 3: Classification performance for DINOv2 at 224 ×
224 resolution under three learning rates.

5.3. Results Limitations

Our experimental findings revealed a significant dispar-
ity in performance among the pretrained models when fine-
tuned with a shared set of hyperparameters. While the
chosen hyperparameters proved effective for the ImageNet-
pretrained ViT-B/16, they yielded only mediocre perfor-
mance for DINOv2 and notably poor results for Sim-
CLR. We attribute these suboptimal outcomes to the in-
herent architectural and algorithmic differences of the self-
supervised learning frameworks, which demand distinct hy-
perparameter configurations for optimal performance.

We hypothesize that the poor performance of SimCLR
was due to the smaller than optimal batch size. Sim-
CLR’s effectiveness heavily relies on having a large num-
ber of negative samples within each batch to learn a good
contrastive signal. ViTs, especially larger ones, can be
memory-intensive, which can mean that it supports smaller
effective batch sizes (due to memory constraints or other
factors) than SimCLR would find optimal.

DINOv2’s self-distillation mechanism, based on a
teacher-student architecture, is inherently more stable and
less prone to collapse compared to purely contrastive meth-
ods, especially when scaled. The exponential moving aver-
age (EMA) update of the teacher network provides a sta-
ble target for the student, and techniques like centering
and sharpening actively prevent mode collapse without ex-
plicitly requiring a large number of negative pairs from
the batch. However, despite its inherent robustness, DI-

NOv2 also performed suboptimally with the hyperparam-
eters tuned for ViT.

The large spikes and oscillations observed in DINOv2’s
training performance, despite a general decreasing trend
in loss, were likely due to the fixed learning rate sched-
ule and optimizer settings that were optimized for a dif-
ferent pretraining paradigm. While DINOv2 is stable, it
can still benefit from a carefully tuned learning rate sched-
ule that accounts for its distillation process, potentially re-
quiring a slower decay or specific warm-up phase to al-
low the teacher to stabilize and guide the student effec-
tively. Furthermore, the interplay between the optimizer
(AdamW) and the learning rate, along with the fixed weight
decay, might not have been ideally suited for DINOv2’s
unique loss landscape. The oscillations suggest that the
model might have been frequently overshooting or oscil-
lating around the optimal minimum, indicating a mismatch
in the learning rate or momentum parameters. A dedicated
hyperparameter search for DINOv2 would involve further
optimizing the learning rate schedule, potentially adjusting
the temperature parameters in its loss function, and explor-
ing different momentum settings for the optimizer.

6. Discussion
This study investigated the impact of different pretrain-

ing strategies on the finetuning performance of Vision
Transformers across varying image resolutions. We com-
pared a supervised ImageNet pretraining approach (ViT-
B/16) with two prominent self-supervised learning (SSL)
methods, DINOv2 and SimCLR, on a downstream classi-
fication task. Our findings highlight crucial considerations
regarding the transferability of learned representations and
the importance of hyperparameter tuning tailored to specific
pretraining paradigms.

6.1. Impact of Pretraining Strategies

The ImageNet-pretrained ViT-B/16 consistently demon-
strated robust performance across all tested resolutions.
This is unsurprising, given the vast scale and diversity of
the ImageNet dataset, which enables the model to learn a
rich set of generalizable visual features. Its strong baseline
performance underscores the enduring value of large-scale
supervised pretraining for many computer vision tasks. The
hierarchical features learned by ViT on ImageNet appear to
transfer effectively, even at lower resolutions, suggesting a
degree of resolution invariance for these learned representa-
tions. Even a cursory learning-rate sweep—limited to three
values—produced sizeable gains for ViT-B/16 across per-
formance metrics. The model’s sensitivity to such light-
touch tuning indicates substantial head-room for further
improvement through a more systematic hyperparameter
search or targeted ablations. This responsiveness is par-
ticularly promising for the practical deployment of Vision
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Transformers in dermatological image analysis, where task-
specific data are limited and rapid iteration is essential.

DINOv2 and SimCLR exhibited more varied—and
in some cases sub-optimal—performance when finetuned
with the hyperparameters that worked best for ImageNet-
pretrained ViT. This disparity underscores that, although
self-supervised methods can learn rich representations with-
out labels, their downstream efficacy hinges on careful task-
specific tuning. Notably, even our minimal learning-rate
sweep yielded non-trivial gains for DINOv2, hinting that
the model may yet rival ViT once fully finetuned; a more
systematic search is warranted before drawing firm conclu-
sions. Overall, DINOv2’s distillation-based training led it
to outpace SimCLR, suggesting that its stability—and lack
of reliance on explicit negative pairs—makes it more forgiv-
ing of sub-optimal settings. By contrast, SimCLR’s perfor-
mance confirmed its sensitivity to the number of negative
samples, a well-documented characteristic of contrastive
learning.

6.2. Resolution Variance and Efficiency

Our resolution ablation study revealed a predictable
trend: higher resolutions generally correlated with im-
proved classification accuracy across all models. This is
intuitively understood as more pixel information provid-
ing richer details for discrimination. However, this gain
in accuracy came at a significant computational cost. Full-
resolution images, while offering the best performance, also
incurred the highest inference times and memory footprints.
This trade-off between performance and computational effi-
ciency is a critical consideration for real-world applications,
particularly in resource-constrained environments.

The computational profiling demonstrated that even
modest reductions in resolution can yield substantial sav-
ings in inference time and memory while retaining a com-
petitive level of accuracy. This suggests that for many prac-
tical scenarios, judicious selection of input resolution can
optimize the balance between performance requirements
and operational constraints. Future work could explore
adaptive resolution mechanisms where the model dynam-
ically adjusts the input resolution based on the complexity
of the image or the available computational budget.

Our analysis revealed a consistent performance trend
across varying model resolutions: the most effective learn-
ing rate identified for 224×224 images maintained its supe-
riority for both 112× 112 and 56× 56 resolutions. We hy-
pothesize this indicates the transferability of training strate-
gies between different resolutions, a finding that merits fur-
ther research.

6.3. Limitations and Future Directions

A primary limitation of this study was the use of a single
set of hyperparameters for finetuning all pretrained models.

As highlighted in the “Results Limitations” section, the sub-
optimal performance of DINOv2 and especially SimCLR
strongly suggests that these models require distinct hyper-
parameter tuning strategies for optimal transfer learning.
Future work should involve comprehensive hyperparame-
ter searches for each pretraining paradigm, including learn-
ing rate schedules, batch sizes, and potentially architecture-
specific parameters (e.g., temperature in contrastive losses).
This would provide a more accurate comparison of their
true transfer learning capabilities.

Furthermore, while our study focused on a specific clas-
sification task, the generalizability of these findings to other
downstream tasks (e.g., object detection, semantic segmen-
tation) remains to be fully explored. Future research could
investigate the transferability of these pretrained models
across a wider range of computer vision benchmarks. Ex-
ploring the robustness of these models to various types of
data degradation (e.g., adversarial attacks, common corrup-
tions) would also provide valuable insights into the qual-
ity of the learned representations beyond standard accuracy
metrics.

Beyond finetuning, it would be valuable to use linear
probing to test the general representations learned by each
model. This technique involves training a simple linear
classifier on top of frozen features, providing a less bi-
ased assessment of the quality of the learned representations
themselves, independent of the finetuning process.

Another promising avenue for future research is exper-
imenting with performing further self-supervised learning
for models such as DINOv2. This could involve continuing
the self-supervised pretraining phase with domain-specific
unlabeled data, potentially enhancing the model’s ability to
learn representations highly relevant to the target domain,
even before finetuning with limited labeled data.

While our primary focus in this study was on general-
purpose models pretrained on large natural image datasets,
future extensions may compare these with domain-specific
Foundation Models (FMs). This would involve evaluating
models pretrained on pathology or dermatology datasets di-
rectly, assessing whether their specialized pretraining yields
superior performance compared to general-purpose models
adapted to the domain. Furthermore, this work can be ex-
tended to other medical domains beyond just dermatology,
such as radiology, ophthalmology, or histopathology, to de-
termine the broader applicability and transferability of these
different pretraining strategies and the potential benefits of
domain-specific FMs in diverse clinical settings.

7. Conclusion and Future Work
This project proposes a resource-efficient approach to

dermatological diagnostics by finetuning pretrained foun-
dation models on compressed dermoscopic images. By sys-
tematically evaluating performance across resolutions and
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model types, we aim to shed light on the practical trade-offs
between diagnostic accuracy and computational efficiency.
Our findings could catalyze more equitable access to AI-
powered healthcare by enabling robust diagnostic tools in
mobile and low-bandwidth environments. Moreover, the
methodology and insights developed here are extensible to
broader areas of medical imaging and efficient model de-
ployment.
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[11] C. Hernández-Pérez, M. Combalia, S. Podlipnik, N. C. F.
Codella, V. Rotemberg, A. C. Halpern, O. Reiter, C. Carrera,
A. Barreiro, B. Helba, S. Puig, V. Vilaplana, and J. Malvehy.
BCN20000: Dermoscopic lesions in the wild. Scientific
Data, 11(1):641, 2024.

[12] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo. Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
10012–10022, 2021.

[13] I. Loshchilov and F. Hutter. Decoupled weight decay regu-
larization, 2019.

[14] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec,
V. Khalidov, P. Fernandez, D. Haziza, F. Massa, V. Rivière,
et al. Dinov2: Learning robust visual features without super-
vision. arXiv preprint arXiv:2304.07193, 2023.

[15] M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio. Transfu-
sion: Understanding transfer learning for medical imaging.
Advances in Neural Information Processing Systems, 2019.

[16] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou. Fix-
ing the train-test resolution discrepancy. arXiv preprint
arXiv:1906.06423, 2019.

[17] P. Tschandl, C. Rosendahl, and H. Kittler. The HAM10000
dataset, a large collection of multi-source dermatoscopic im-
ages of common pigmented skin lesions. Scientific Data,
5:180161, 2018.

[18] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer. Scaling
vision transformers. arXiv preprint arXiv:2106.04560, 2021.

8



9. Appendices

Figure 4: Training loss trajectory for ViT with 224 × 224
image resolution at varying learning rates

Figure 5: Eval accuracy trajectory for ViT with 224 × 224
image resolution at varying learning rates

Figure 6: Training loss trajectory for ViT with 112 × 112
image resolution at varying learning rates

Figure 7: Eval accuracy trajectory for ViT with 112 × 112
image resolution at varying learning rates

Figure 8: Training loss trajectory for ViT with 56×56 image
resolution at varying learning rates

Figure 9: Eval accuracy trajectory for ViT with 56 × 56
image resolution at varying learning rates
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Figure 10: Training loss trajectory for DINOv2 with 224×
224 image resolution at varying learning rates

Figure 11: Eval accuracy trajectory for DINOv2 with 224×
224 image resolution at varying learning rates
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